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The spreading of a globally distributed damage, created in the stationary 
regime, is studied in a single-component irreversible reaction process, i.e., the 
BK model [Browne and Kleban, Phys. Reo. A 40, 1615 (1989)]. The BK model 
describes one variant of the A + A --+ A2 reaction process on a lattice in contact 
with a reservoir of A species. The BK model has a single parameter, namely the 
rate of arrival of A species to the lattice (Y). The model exhibits an irreversible 
phase transition between a stationary reactive state with production of A 2 
species and a poisoned state with the lattice fully covered by A species. The 
transition takes place at critical points (Yc) which solely depend on the 
Euclidean dimension d. It is found that the system is immune for d =  1 and 
d = 2 ,  in the sense that even 100% of initial damage is healed within a finite 
healing period (T,) .  Within the reactive regime, T ,  diverges when approaching 
Yc according to T H oc ( Y c - Y ) - ~ ,  with c ~  1.62 and a ~  1.08 for d =  1 and 
d = 2 ,  respectively. For d = 3  a frozen-chaotic transition is found close to 
Ys ~- 0.4125, i.e., well inside the reactive regime 0 <~ Y<~ Yc.~ 0.4985. Just at Ys 
the damage D(t) heals according to D ( t ) ~  t -~, with ~_0.71. For the 
frozen-chaotic transition at d = 3  the order parameter critical exponent 
fl ~ 0.997 is determined. 

KEY WORDS: Irreversible reaction processes; damage spreading; irreversible 
phase transitions. 

1. I N T R O D U C T I O N  

D a m a g e  s p r e a d i n g  ( D S )  is b e i n g  s t u d i e d  w i t h  g r o w i n g  a t t e n t i o n  in  t h e  f ie ld  
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model, 121 spin glasses, 13' 51 etc. The DS problem consists, first, in taking a 
steady-state configuration of the system {~r A} and creating at t = 0  an 
initial damage D(0) in that configuration (this procedure gives a second 
configuration {a A }). Then, one investigates the time evolution of both con- 
figurations using the same dynamics calculating their Hamming distance, 
defined by 

N 

O(t)=(1/N) ~ la~(t)--tr~(t)l  (1) 
i = 1  

where N is the number of sites of the system. Physically D(t) just measures 
the fraction of sites for which the configurations are different. Starting with 
a small D(0) value, D(t) will go asymptotically to zero in the so-called 
frozen phase, whereas it will tend to a finite value different from zero in the 
so-called chaotic phase, c5~ While the study of DS in systems exhibiting 
reversible phase transitions has received much attention/~-5~ similar studies 
in systems undergoing irreversible transitions are still in their infancyJ 6'71 
Irreversible reaction processes often appear in many fields of science, such 
as solid-state physics, astrophysics, biophysics, ecology, catalysis, etc., and 
consequently they are a subject of current interest. Particular attention has 
been devoted to the study of irreversible phase transitions occurring 
between a stationary reactive state and a configuration from which the 
system cannot escape/8 ~81 

Very recently, I have shown that DS introduces a new kind of 
dynamic critical behavior in some irreversible reaction processes such as 
the monomer-monomer  reaction process 16) and the ZGB model) 6' 71 So far, 
all these models have involved multicomponent reaction processes. 
However, irreversible phase transitions also occur in single-component 
reaction models (see, e.g., refs. 8, 11, 12, 17, and 18). The aim of the present 
work is to investigate the spreading of damage in an irreversible single- 
component reaction model as proposed by Browne and Kieban (the BK 
model)/tL ~2~ This reaction system has been selected considering that its 
critical behavior is very well known in dimensions d =  1, 2, and 3. 

2. S I M U L A T I O N  DETAILS A N D  T H E O R E T I C A L  B A C K G R O U N D  

2.1. The  M o d e l  

The BK model describes one variant of the irreversible reaction 
A + A ---, A 2 in a lattice. Each lattice site can be either occupied by an atom 
(state A) or vacant (state V). The simulation algorithm is as follows: at a 
given time step a site is selected at random. If the chosen site is in the state 
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A, it remains unchanged. If the site is vacant, then the update depends on 
the number of nearest-neighbor (NN) sites that are in state A. If none are 
occupied, the chosen site is changed to A. If at least one NN is in state A, 
then with probability Y the chosen site is converted to A and the NNs are 
unchanged. Otherwise, one of the occupied NNs is chosen at random and 
vacated, with the central site remaining V (this step corresponds to the 
reaction A + A --~ A2). In d =  1 the model exhibits a continuous irreversible 
phase transition, just at Yc~0.2762, such that for Y>>, Yc the lattice 
becomes irreversibly covered by A species while for Y< Y c a  stationary 
reactive state with A2 production is observed. {~2} In higher dimensions the 
critical points are Yc~_0.4730 ( d = 2 )  and Yc~0.4985 (d=3) ,  respec- 
tively. {~2~ 

The model is simulated in d dimensions and using lattices of side 
L = I 0 4  ( d = l ) ,  L = 1 0 0  (d=2) ,  and L = 3 0  (d=3) .  One time unit 
corresponds to a number of trials equal to L a. 

2.2. Damage Spreading 

A steady-state configuration is obtained after t = 2 x  103, then the 
damage is created in a second configuration and its spreading is monitored 
following the dynamics of both configurations simultaneously. For this 
purpose, the crucial idea is to apply, on the configurations {a~'}, the same 
sequence of random numbers in the algorithm in order to produce the 
same dynamics. In Eq. (1) all contributions to D given by V-A terms are 
taken to be equal to unity. Furthermore, we study the spreading of an 
initial damage globally distributed through the system, in contrast with 
another approach, which only considers the spreading of a local initial 
damage. 

3. RESULTS AND DISCUSSIONS 

3.1. Results for d = l  and d = 2  

In both one and two dimensions we have observed that any small 
initial damage [ D ( t = 0 ) < <  1] becomes quickly healed within both the 
poisoned and the reactive phases. Increasing the initial damage, we found 
that, surprisingly, even for D(0 )=  1 the damage becomes healed, as shown 
in Fig. 1 ( d =  2). These results are in contrast to standard damage studies, 
where one works in the limit D ( 0 ) ~ 0 ,  e.g. taking D ( 0 ) =  1/L a. Further- 
more, one concludes that in one and two dimensions this irreversible reac- 
tion system is immune in the sense that even the largest damage becomes 
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Fig. 1. 

v 

10 I 

0 -3 

10 4 

10 -5 

I0 o 

W v v .  

101 10 2 10 3 
t 

Plot of  D(t) versus t obtained for d= 2 and taking D(0)  = 1 for different Y-values. 
�9 Y = 0.400, []  Y = 0.450, x7 y = 0.465 and �9 Y = 0.470. 
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Fig. 2. Log - log  plots of  T H versus zl Y, according to equat ion  (2). Upper  curve ( � 9  data 
obtined taking D(0)  = 1 and for d =  1. The straight line corresponds to a least square fit of the 
data and has slope ~x = 1.62. Lower  curves: data corresponding to d =  2 and obtained taking 
D(0)  = 1 (~7) and D ( 0 ) =  0,~ ( � 9  The straight line has slope ~x = 1.08. M o r e  details  in the text. 
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healed within a finite time. However, the healing time ( T , )  depends on Y 
and increases when approaching criticality (see, e.g., Fig. 1). In order to 
describe this finding, let us propose the following power law behavior: 

T ,  oc (A Y)-~ (2) 

with zl Y= Y c - Y .  Figure 2 shows log-log plots of TH versus zl Y corre- 
sponding to simulations in d =  1 and d =  2. For d =  1 a least square fit of 
the data gives ~ 1.62 +0.04, where the error bars merely reflect the 
statistical error. For d = 2  we have also checked the dependence of T H 
on the initial damage. Taking D(0) = 1, one obtains c( ~ 1.04 _ 0.04, while 
taking D(0) = OA, where OA is the concentration of A species on the lattice, 
one obtains c(~ 1.14+0.04, where in both cases the error bars merely 
reflect the statistical error. The obtained result suggests that, at least'for the 
analyzed examples, T,~ is independent of D(0). So we can assume c t -  
1.08+0.08 as an average value for the exponent. For Y> Yc the lattice 
becomes irreversibly covered by A species, so the healing time is also 
the "poisoning" time Tp= TH. It is found that Tp also diverges when 
approaching Y,. according to a power law similar to Eq. (2), i.e., Tp ~c 
( Y - Y  c) -~~ The obtained exponents are ~(* ~1.59 __+ 0.04 ( d = l )  and 
c(*~ 1.02 +0.04 (d=  2), so within error bars one may conjectured that 
~ ~-- 0~*. 
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Fig. 3. Plot of D(t) versus t/~ Y-~ (ct= 1.62) obtained for d =  1 and taking D(0 )=  1 for 
different Y-values. �9 Y=0.261, ~7 Y=0.266 and �9 Y=0,270. 
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The dependence of T ,  on ,4Y suggests that the time scale can be 
rescaled, in order to obtain data collapsing, according to 

D(t) ozt/,4Y -~ (3) 

Figure 3 shows a plot of D(t) versus the scaled time for d =  1. The obtained 
results suggest the validity of equation (3) since data collapsing is acceptable. 

3.2. Results fo r  d = 3  

In three dimensions one has that the critical point of the BK model is 
close to Yc ~-0.4985. On the contrary than in lower dimensions one has 
damage spreading within the reactive regime, e.g., 0.42 < Y<~ Yc, while 
damage healing is observed roughly for Y<0.40. So let us define the 
spreading critical point Ys to be the Y value at which the frozen chaotic 
transition takes place. Close to Ys we assume the following ansatz 114) 

D(t) = t-~F(,4t 1/') (4) 

where A = Y -  Ys, for large t the scaling function behaves as F(x) oz x a, 
and 6, v and fl are critical exponents. For A > 0 and t ~ oo one has that 
D(t) take a stationary value independent of t, so D(t) oc "4~ and fl = v6. 
Note that D is the appropriated order parameter and fl the associated 
critical exponent~13( For '4 = 0  and t ~  ov the damage should be healed 
according to a single power-law decay and consequently a log-log plot of 
D(t) versus t should give a straight line. On the other hand, for "4<0 
( ,4>0)  the cuves should veer downward (upward), respectively. This 
property will allow us to determine both Ys and 6 quite accurately. 
Following this procedure the best straight line is obtained for Ys~- 
0.4t25_+0.0025 and a least square fit gives 6~0.713_+0.005, where the 
error bars merely reflects the statistical error. After determining the spread- 
ing critical point we have studied its dependence on the initial damage. 
Figure 4 shows plots of D(t) versus t obtained, just at Ys, for three dif- 
ferent values of the initial damage. Taking D(0) = 0.5 it is possible to fit the 
asymptotic behavior of D(t) obtaining 6 ~ 0.670 _+ 0.010 which is consistent 
with the exponent determined taking D(0 )=  1. Taking a rather small value 
of the initial damage, e.g., D(0 )=  0.01, on observes that the asymptotic 
behavior of D(t) approaches those obtained taking larger D(0)-values. So, 
at least within the studied range of D(0)-values, the dynamics of damage 
healing is independent olD(0).  

Once that Ys has been determined one can also investigated the 
behavior of the damage within the chaotic phase. It is found that for 
Ys < Y< Yc the damage reaches a stationary value D = D ( t ~  ~ )  which 
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Fig. 4. 
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Log-log plots of D(t) versus t obtained, at Ys=0.4125, for different values of the 
initial damage: XTD(0)= 1, TD(0)=0.5  and OD(0)=0.01. 
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Fig. 5. Log-log plot of D versus A for the BK-model in three dimensions. The slope of the 
straight line is fl = 0.997. 
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solely depends on Y, as expected from the scaling ansatz of equation (4). 
So, figure 5 shows that a log-log plot of D versus A exhibits linear behavior 
and by means of a least square fit one can determine the slope which gives 
for the order parameter critical exponent fl ~_ 0.997 ___ 0.012, where the error 
bars reflects the statistical error. 

It should be stressed that the frozen-chaotic and the reactive-poisoning 
transitions take place at quite differential critical points, i.e., Ys=0.4125 
and Yc~0.4985, respectively. Furthermore, the later belongs to the 
Directed Percolation universality class, with fl~0.797 t2~ while the former 
has a quite different order parameter critical exponent, e.g., fl ~ 0.997. So, 
it becomes evident that DS introduces a new kind of dynamic critical 
behavior in the BK-model. 

4. C O N C L U S I O N S  

The spreading of a globally distributed damage is studied for the 
BK-model in 1, 2, and 3 dimensions. It is found that the maximum possible 
initial damage becomes healed in 1 and 2 dimensions for all Y-values, i.e., 
the system is immune in lower dimensions. However, a frozen-chaotic 
transition is found for d =  3 and it is located at a quite different critical 
point than the well known reactive-poisoning transition. Damage spreading 
introduce a new type of dynamic critical behavior whose nature depends 
on the dimensionality, d = 3 is the lower critical dimension for the onset of 
damage spreading in the BK-model. 
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